The Potts - q random matrix model : loop equations , critical exponents , and rational case

نویسنده

  • B. Eynard
چکیده

In this article, we study the q-state Potts random matrix models extended to branched polymers, by the equations of motion method. We obtain a set of loop equations valid for any arbitrary value of q. We show that, for q = 2− 2 cos l r π (l, r mutually prime integers with l < r ), the resolvent satisfies an algebraic equation of degree 2r− 1 if l+ r is odd and r− 1 if l+ r is even. This generalizes the presently-known cases of q = 1, 2, 3. We then derive for any 0 ≤ q ≤ 4 the Potts-q critical exponents and string susceptibility. [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical behavior of the random Potts chain

We study the critical behavior of the random q-state Potts quantum chain by density-matrix renormalization techniques. Critical exponents are calculated by scaling analysis of finite lattice data of short chains (L<16) averaging over all possible realizations of disorder configurations chosen according to a binary distribution. Our numerical results show that the critical properties of the mode...

متن کامل

Nishimori Point in Random-bond Ising and Potts Models in 2d

We study the universality class of the fixed points of the 2D random bond q-state Potts model by means of numerical transfer matrix methods. In particular, we determine the critical exponents associated with the fixed point on the Nishimori line. Precise measurements show that the universality class of this fixed point is inconsistent with percolation on Potts clusters for q = 2, corresponding ...

متن کامل

A Study of Cross-Over Effects For The 2D Random Bond Potts Model

We present results of a numerical simulation of the q-state random bond Potts model in two dimensions and for large q. In particular, care is taken to study the crossover from the pure model to the random model, as well as the crossover from the percolation to the random model. We show how to determine precisely the random fixed point and measure critical exponents at this point. PACS numbers: ...

متن کامل

Phase diagram and critical exponents of a Potts gauge glass.

The two-dimensional q-state Potts model is subjected to a Z(q) symmetric disorder that allows for the existence of a Nishimori line. At q=2, this model coincides with the +/- J random-bond Ising model. For q>2, apart from the usual pure- and zero-temperature fixed points, the ferro/paramagnetic phase boundary is controlled by two critical fixed points: a weak disorder point, whose universality ...

متن کامل

Spin–spin critical point correlation functions for the 2D random bond Ising and Potts models

We compute the combined two and three loop order correction to the spin-spin correlation functions for the 2D Ising and q-states Potts model with random bonds at the critical point. The procedure employed is the renormalisation group approach for the perturbation series around the conformal field theories representing the pure models. We obtain corrections for the correlations functions which p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999